

EGC221: Digital Logic Lab

Experiment #3 Combinational Logic Circuits

Student's Name:	Reg. no.:
Student's Name:	Reg. no.:
Semester: Fall 2021	Date: 10 February 2021

Assessment:

Assessment Point	Weight	Grade
Methodology and correctness of results		
Discussion of results		
Participation		
Assessment Points' Grade:		

Comments:	

Experiment #3:

Basic Logic Circuits

Objectives:

The objectives of this experiment are to:

- 1. Verify a logic function through circuit simulation, then by building the logic circuit,
- 2. Analyze a logic circuit using a truth table, and
- 3. Investigate the concept that two or more circuits can result in exactly the same output.

Procedure:

Use Logisim and Digital I/O Module, DC Power Supply, Breadboard, Wires, and 74xx Logic ICs to solve the following exercises.

Exercise 1:

(a) Derive the logic expression for the circuit illustrated in Figure 1.

Figure 1. Basic logic circuit with three inputs A, B, and C.

Logic Expression:	X =
-------------------	-----

(b) Analyze the circuit in Figure 1 and complete **Table 1** below.

	Tabl INPUTS	e 1. Basic logic circuit with three inputs A, B, and C. INTERMEDIATES OUTPUT					
А	В	С					
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

(c) Use the breadboard in Figure 2 and mark (using a color pen or pencil or import to Paint) all the necessary connections to build the circuit shown in Figure 1. Connect Input A on switch S7, Input B on switch S6, Input C on switch S5, and connect output X on LED 7. [Note: Use a ruler to draw the lines connecting the components and clearly indicate connection points.]

Figure 2. Breadboard diagram for logic function X.

[Insert Logisim circuit here]

Figure	3.	7404	7408	and	7432	ICs	circuit	simulati	on
- igaio	•	,	1 100	ana	1 102	.00	onoun	onnaiaa	~

S7	S6	S5	L7
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Table 2. Basic logic circuit – Logisim results.

 (e) Verify the operation of your circuit using a Digital I/O Module, DC Power Supply, Breadboard, 7404, 7408 and 7432 ICs, and Wires. Complete Figure 4 and Table 3.

[Insert Photo of circuit here]

Figure 4. Combinational circuit photo

S7	S6	S5	L7
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Table 3. Basic logic circuit – Build results.

(f) Compare the results from Tables 1, 2, and 3:

Exercise 2:

(g) Use Logisim to simulate the logic expression: X = AC + B. Complete **Figure 5** and **Table 4**.

[Insert Logisim circuit here]

Figure 5. Basic circuit simulation of the logic expression: X = AC + B.

S7	S6	S5	L7
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Table 4. Basic Logic Circuit – Logisim results.

(h) Use the breadboard in Figure 6 and mark (*using a color pen or pencil or import to Paint*) all the necessary connections to build the circuit illustrated in Figure 4. Connect Input A on switch S7, Input B on switch S6, Input C on switch S5, and connect output X on LED 7. [Note: Use a ruler to draw the lines connecting the components and clearly indicate connection points.]

Figure 6. Basic circuit wiring of the logic expression X = AC + B.

(i) Verify the operation of your circuit using a Digital I/O Module, DC Power Supply, Breadboard, 7408 and 7432 ICs, and Wires. Complete **Figure 7** and **Table 5**.

[Insert Photo of circuit here]

Figure 7. Combinational Circuit.

S7	S6	S5	Output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Table 5. Basic Logic Circuit – Build results.

(j) Compare the results from Tables 4 and 5:

(k) Conclusions (discussion of results):